

META – PAVIMENTAÇÃO VIAS VICINAIS DE RANCHO QUEIMADO/SC

ETAPA 1 – PAVIMENTAÇÃO ASFÁLTICA, DRENAGEM E SINALIZAÇÃO NA ESTRADA RIOS DOS QUATIS – INVERNADINHA – EST. 4 A 18

CONVÊNIO 931909 - 2022

RANCHO QUEIMADO/SC

RELATÓRIO DE PROJETO VOLUME 02

SUMÁRIO

4	PRES	SENTAÇÃO DOS PROJETOS	2
₹	ELAT	ÓRIO DO PROJETO	2
	1.	Apresentação do Documento	2
	2.	Normas de Referência	2
	3.	Estudo Geológico-Geotécnico	3
	4.	Estudo Topográfico	3
	5.	Estudo de Tráfego	4
	6.	Estudo Ambiental	4
	7.	Estudo Hidrológico	5
	8.	Projeto Geométrico	6
	9.	Projeto De Terraplenagem	7
	10.	Distâncias até o Bota Fora das Obras	8
	11.	Projeto De Drenagem	8
	1	1.1. Dimensionamento Hidráulico	8
	1	1.2. Galerias circulares	9
	1	1.3. Capacidade das Sarjetas	9
	12.	Projeto De Pavimentação	10
	12.1	. Pavimentação Em Concreto Asfáltico	10
	1.	2.1.1. Distância Média de Transporte (DMT) de materiais das camadas de pavimento:	13
	13.	Projeto De Sinalização	13
	13.1	. Sinalização Vertical	13
	14.	Orçamento	13
	15.	Prazos E Cronograma	14
	16	Finalização Do Documento	14

APRESENTAÇÃO DOS PROJETOS

APRESENTAÇÃO DOS PROJETOS

A Associação dos Municípios da Região da Grande Florianópolis, através da Assessoria de Engenharia e Arquitetura apresenta o Projeto de Engenharia de Pavimentação Asfáltica, Drenagem e Sinalização da Estrada Rio dos Quatis, com 280,0 metros de extensão.

O presente volume é dedicado à apresentação de especificidades da execução do projeto, descrevendo todos os serviços a serem executados em conformidade com a planilha orçamentária.

Dados dos Projetos da Estrada Rios dos Quatis- Invernadinha

Início da Pista do Projeto: Estaca 4 +00 m em seu eixo de projeto.

Final da Pista do Projeto: Estaca 18+00, em seu eixo.

Extensão: 280,00 m;

Largura da pista: 5,00 m.

Sistema de Drenagem: Drenagem superficial com sarjetas triangulares e travessias.

Estes projetos são apresentados em 4 volumes, sendo que o Volume de n.º 01 é denominado **Memorial Descritivo**, onde são detalhados os serviços a serem executados no projeto, a partir da Planilha Orçamentária. O Volume de nº 02 é denominado de **Relatório do Projeto** e contêm os parâmetros que guiaram a elaboração do projeto, tais como, Planilhas de Drenagem e Relatório de Volumes, descrevendo a metodologia e os resultados obtidos na elaboração dos projetos e peças orçamentárias. O Volume de n.º 03 contém a **Documentação Orçamentária, declarações diversas e ART's**, contento planilha de orçamento, memória de quantidades, composição de BDI, composições de custos próprias, cronograma e quadro de composição de investimento. Por fim, o volume de n.º 04 possui os **Projetos de Engenharia**, sendo este referente aos Projetos Pavimentação, Drenagem e Sinalização.

RELATÓRIO DO PROJETO

1. Apresentação do Documento

O presente relatório de projeto destina-se a detalhar e justificar todos os parâmetros utilizados para a elaboração do Projeto Básico de Pavimentação, drenagem pluvial e sinalização viária da Estrada Rio dos Quatis – Invernadinha – Est. 4 a 18 no município de Rancho Queimado/SC.

2. Normas de Referência

- NBR 13133 (1994) Execução de Levantamento Topográfico.
- NBR 15645 Execução de obras de esgoto sanitário e drenagem de águas pluviais utilizando aduelas de concreto.
- NBR 7211 (2009) Agregados para concreto Especificação.
- NBR 12142 (2010) Concreto Determinação da resistência à tração de corpos de prova prismáticos.

- NBR 9895 (2016) Solo Índice de Suporte Califórnia Método de Ensaio.
- NBR 12752 (1992) Execução de reforço do subleito de uma via.
- NORMA DNIT 104/105/106/107/108 (2009) -ES Terraplenagem.
- NORMA DNIT 138 (2010) -ES- Reforço de Subleito
- NORMA DNIT 137 (2010) ES Regularização do Subleito
- NORMA DNIT 019 (2004) ES Transposição de sarjetas
- NORMA DNIT 018(2004) ES Sarjetas e valetas
- NORMA DNIT 031(2004) ES Concreto Asfáltico

3. Estudo Geológico-Geotécnico

Abrange informações geológicas, geotécnicas e ambientais de caráter geral e local, baseados nas instruções do DNIT.

- Metodologia: Informações e dados geológicos, geotécnicos, geométricos, planialtimétricos e ambientais utilizados e obtidos sobre o local de intervenção.
- Geologia Regional: Estudos geológicos apontam as características dos tipos litológicos que incluem o traçado e sua proximidade, as condições climáticas, a cobertura vegetal, as condições geotécnicas do trecho e os tipos de materiais que podem ser utilizados.

Em anexo é apresentado o ensaio de CBR, expansão e compactação. E abaixo é apresentada tabela resumo dos ensaios:

	Amostra 02	Amostra 03
ISC (%)	11	29
EXP (%)	0,03	0,11
Umidade Ótima (%)	6,4	7,5
Densidade Máxima (g/cm³)	2,062	1,78

4. Estudo Topográfico

Com base na situação atual da via, o projeto do traçado procurou evitar a interferência com as edificações existentes ao longo do trecho, assim como no projeto do greide, procurou-se aproveitar o alinhamento do leito existente, evitando cortes e aterros desnecessários.

O estudo foi desenvolvido a partir da ABNT NBR 13133/94, seguindo os elementos:

- Cadastro de propriedades e benfeitorias, cadastro de cursos d'água, valas, cercas, muros, postes, meio-fio, via existente, pontes e outras interferências;
- Levantamento de bueiros e dispositivos de drenagem existentes;
- Cadastro de intersecções e acessos;
- Determinação de cota máxima de enchente dos rios;
- Elementos de curvas;
- Eixo do projeto estaqueado;

- Determinação do eixo e greide de terraplenagem;
- Seções transversais e perfil longitudinal.

Os levantamentos planialtimétrico e cadastral foram realizados com Estação Total, tomando como referencial de amarração marcos implantados. Através de um sistema de codificação foram levantados todos os pontos de altimetria do terreno e cadastro, sendo confeccionado conjuntamente no campo, um croqui que serviu de orientação ao desenhista para interpretação e desenho desses elementos. Os dados coletados em campo foram digitalizados e processados com auxílio do software *topoGRAPH SE* e/ou *AutoCAD Civil 3D*, obtendo-se o produto final (levantamento topográfico planialtimetrico cadastral da via), servindo de base para o desenvolvimento do Projeto Geométrico.

5. Estudo de Tráfego

Não foi possível realizar a contagem de tráfego na rua com isso foi admitido um volume N de 2x10⁶, classificando a via com um tráfego previsto meio pesado.

Classificação das vias e parâmetros de tráfego

Função	Tráfego Vida previsto de projeto		707/00/00/00/00	e inicial carregada	Equiva-	N	N
predominante			Veículo Leve	Caminhão/ Ônibus	lente /	行の	característico
Via local	LEVE	10	100 a 400	4 a 20	1,50	2,70 x 10 ⁴ a 1,40 x 10 ⁵	10 ⁵
Via Local e Coletora	MÉDIO	10	401 a 1500	21 a 100	1,50	1,40x 10 ⁵ a 6,80x 10 ⁵	5 x 10 ⁵
Vias	MEIO PESADO	10	1501 a 5000	101 a 300	2,30	1,4 x 10° a 3,1 x 10°	2 x 10 ⁶
Coletoras e Estruturais	PESADO	12	5001 a 10000	301 a 1000	5,90	1,0 x 10 ⁷ a 3,3 x 10 ⁷	2 x 10 ⁷
Estruturais	MUITO PESADO	12	> 10000	1001 a 2000	5,90	3,3 x 10 ⁷ a 6,7 x 10 ⁷	5 x 10 ⁷
Faixa Exclusiva de	VOLUME MÉDIO	12		< 500		3 x 10 ^{6 (1)}	10 ⁷
Ônibus	VOLUME PESADO	12	*	> 500	8	5 x 10 ⁷	5 x 10 ⁷

N = valor obtido com uma tava de crescimento de 5% ao ano, durante o neríodo de projeto

Tabela retirada da Instrução de Projeto 02/2004 da Prefeitura de São Paulo.

6. Estudo Ambiental

Após o levantamento topográfico e o estabelecimento do corredor de trabalho, foram feitas observações em campo para detalhar os impactos ambientais, possibilitando assim medidas mitigadoras. A metodologia utilizada no desenvolvimento dos estudos considerou o levantamento topográfico e imagens de satélite, definindo-se a área de estudo e as restrições identificadas.

As características socioambientais da área afetada e as condições ambientais do trecho serviram de base para definir os objetivos gerais para o projeto, estabelecidos como:

- Evitar ao máximo a interferência em áreas de preservação permanente (APP) e vegetações protegidas por lei;
- Respeitar o traçado existente da rodovia ou evitar ao máximo o desvio de trajeto da via existente;
- Minimizar conflitos com a ocupação antrópica lindeira, priorizando a segurança da população local e dos usuários da via;
- A manutenção das características originais da paisagem do entorno e,
- A proteção de rede hidrográfica da área do projeto.

7. Estudo Hidrológico

No caso das Obras de Arte Correntes, as bacias foram identificadas em imagens de satélite, calculando-se as suas áreas, comprimentos dos talvegues principais e declividades. O tempo de concentração não é constante para uma dada área, mas varia com o estado de recobrimento vegetal e a altura e distribuição da chuva sobre a bacia. O cálculo do Tempo de Concentração para cada bacia foi feito mediante a aplicação do método cinemático de cálculo onde:

$$t_C = \sum_{i=1}^n \frac{L_i}{V_i}$$

Onde:

t_c - tempo de concentração da bacia, em segundos;

Li - comprimento do trecho, em m:

Vi- velocidade média no trecho, em m/s.

A Intensidade da Precipitação foi calculada com a equação da chuva proposta por Júlio Simões e Doalcey Ramos, para cada tempo de concentração e período de retorno especificados nas planilhas de dimensionamento apresentadas anexas a este relatório.

$$i = \frac{1,9206 \, T^{0,0466}}{\left(t - 4\right)^{0,1043}}$$

Para as galerias pluviais e bocas de lobo, com bacias de pequenas dimensões, foi admitido um Tempo de Concentração inferior a 5 minutos e um Período de Recorrência de 5 anos.

O cálculo das vazões de projeto foi feito com base no método racional, uma vez que as bacias envolvidas são de pequenas dimensões, onde a vazão é dada pela equação:

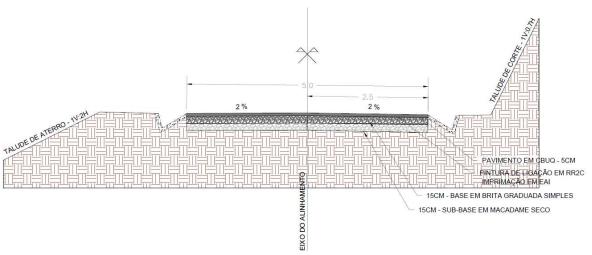
$$Q = 0.28 . C.i.A$$

 $Q - m^3/s$;

C é o coeficiente de deflúvio ou de Runoff;

I - mm/h;

 $A - Km^2$


8. Projeto Geométrico

O projeto geométrico foi elaborado de acordo com as instruções normativas do DNIT e DEINFRA, seguindo em linhas gerais, as Diretrizes para a Concepção de Estradas (DCE-DEINFRA). As estradas e as interseções para o trânsito público são divididas em 5 grupos de categoria, conforme a tabela a seguir:

LOCALIZAÇÃO	URBANIZAÇÃO DAS MARGENS	FUNÇÃO DETERMINANTE	GRUPO DE CATEGORIA	DIRETRIZES QUE DEVEM UTILIZAR-SE	
1	2	3	4	5	
Fora de áreas	Sem	Interligação	Α	DCE-R	
urbanizadas	OCIII	michigação		DCE-S	
	Sem	Interligação	В	DCE-C	
		Interligação	С	DCE-I	
Dentro de áreas	Com ou	intenigação		DCE-TPP ¹	
urbanizadas	possibilidade de	Integração de	D	DCE-R	
	ter	áreas		RCE-EiA ²	
		Local	Е		

Transporte público coletivo de pessoas Estradas de integração

Seção Tipo de Pavimentação:

Da estaca 6+10m a 7 há transição para pista de 6,0m com alargamento no bordo esquerdo, da Estaca 7 a 9+10m a pista se mantem com 6,0m de largura, da estaca 9+10 a 10 há o estreitamento do bordo esquerdo para seção tipo de 5,0m de largura.

Características Técnicas:

1) Região Predominante: Irregular/Ondulada

2) Velocidade Diretriz: 40 km/h

3) Faixa de domínio: apenas plataforma

4) Rampa Máxima: 16,64 %5) Declividade das faixas: -2%

6) Plataforma de Terraplenagem: extensão da via x largura total das pistas

TABELA DE COMPONENTES

CAMADA	MATERIAL	DIMENSÕES (m)		
GAMASA	mar Enga	LARGURA	ESPESSURA	
Revestimento	CBUQ	Conforme seção	5,0cm	
Base	BGS	Conforme seção	15 cm	
Sub-Base	MACADAME SECO	Conforme seção	15 cm	

O Projeto Geométrico foi desenvolvido com embasamento no Estudo Topográfico, constituído de levantamentos que possibilitaram caracterizar fielmente o terreno e elementos da região em estudo. Desta forma, o projeto elaborado buscou características planialtimétricas que melhor se adaptassem às condições das Ruas e edificações adjacentes, como também estabeleceu um novo plano funcional integrando a nova via ao sistema existente.

9. Projeto De Terraplenagem

O projeto foi desenvolvido de acordo com o projeto geométrico, tendo como referencia os elementos básicos obtidos através dos estudos geológicos e geotécnicos. O projeto de terraplenagem é composto pela definição dos seguintes elementos:

- Seções transversais de terraplenagem;
- Inclinação dos taludes de corte e aterro;
- Volumes de corte e aterro conforme projeto topográfico.

Escavação, carga e transporte de material:

Estes serviços compreendem a escavação, a carga, transporte e espalhamento do material no destino final (aterro ou bota-fora). Os solos dos cortes serão classificados em conformidade com as seguintes determinações:

- Materiais de 1ª categoria: solos de natureza residual ou sedimentar, seixos rolados ou não e rochas em adiantado estado de decomposição, com fragmentos de diâmetro máximo inferior a 0,15m, qualquer que seja o teor de umidade apresentado. Em geral, este tipo de material é escavado por escavadeira hidráulica. A escavação deste material não requer uso de explosivos.
- Materiais de 2ª categoria: solos de resistência ao desmonte mecânico inferior a da rocha não alterada. A extração pode exigir o uso de equipamentos de escarificação ou até o uso de explosivos. Consistem em blocos de rochas de volume inferior a 2m³ e os matacões ou pedras de diâmetro médio entre 0,15m e 1,00m.

TABELA

CATEGORIA	MATERIAL	PROCESSO
1ª	Solo	Escavação simples
2ª	Solo resistente	Escarificação
3ª	Rocha	Desmonte com explosivos

Remoção de solos moles

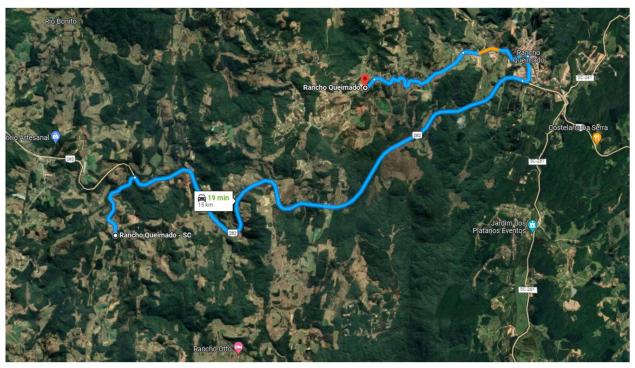
7

Processo de retirada e disposição de camadas de solo de baixa resistência ao cisalhamento, podendo ser considerados "solos moles" os depósitos de solos orgânicos, turfas, areias muito fofas e solos hidromórficos.

Geralmente ocorrem em zonas alagadiças, mangues, antigos leitos de ribeirões e planícies de sedimentação. Possui baixa resistência e alto teor de umidade.

Em anexo é apresentado o relatório de volumes.

Reposição com material de jazida


Substituição de materiais inadequados (com baixa capacidade de suporte, resistência ao cisalhamento e alto teor de umidade), previamente removidos do subleito, dos cortes ou dos terrenos de fundação dos aterros. Os solos para reposição deverão apresentar os seguintes requisitos:

Isenção de matéria orgânica, micácea ou diatomácea;

Expansão máxima de 2%, determinada pelo ISC, utilizando-se energia normal.

10. Distâncias até o Bota Fora das Obras

Foi definido pelo setor de Engenharia da Prefeitura de Rancho Queimado o local de bota fora a ser utilizado, assim utilizou-se de DMT de 15,0 Km.

11. Projeto De Drenagem

11.1. Dimensionamento Hidráulico

O projeto de drenagem tem como objetivo a definição e dimensionamento das estruturas de captação, controle e condução de aguas pluviais.

Este projeto é constituído por sistemas de drenagem superficial e drenagem de travessia urbana.

Afim de otimizar os cálculos foi utilizada planilha própria do projetista para cálculo de galerias circulares, bem como verificação da capacidade das sarjetas trapezoidais.

11.2. Galerias circulares

A determinação do diâmetro das galerias foi feita com a fórmula de Manning, com o coeficiente de rugosidade n, estabelecido na planilha de dimensionamento anexa. Com esta metodologia, determinouse para cada bacia a declividade e diâmetro especificado no projeto executivo.

$$Q = \frac{0.3117}{n} D^{8/3} I^{1/2}$$

D = Diâmetro da galeria (m)

Q = Vazão (m³/s)

n = Coeficiente de rugosidade

I = Declividade da galeria (m/m)

11.3. Capacidade das Sarjetas

As chuvas, ao caírem escoam, inicialmente, pelos terrenos até chegarem às ruas. Sendo as ruas abauladas (declividade transversal) e tendo inclinação longitudinal, as águas escoarão, rapidamente, para as sarjetas e, desta, rua abaixo. Se a vazão for excessiva, ocorrerá: alagamento e seus reflexos, inundações de calçadas e, em velocidades exageradas, erosão do pavimento. Assim, de modo a garantir escoamento seguro das águas superficiais, é calculado o escoamento das sarjetas a partir das equações:

$$Qsarjeta = \frac{A \cdot R_H^{2/3} \cdot \sqrt{I_{rua}}}{n}$$

$$\frac{A \cdot R_H^{2/3}}{n} = k$$

$$\frac{0,088 \cdot 0,098^{2/3}}{0,013} = k$$

$$1,440 = k$$

$$Q_{sarjeta} = k \cdot \sqrt{I_{rua}}$$

Q_{sarjeta} = capacidade da sarjeta

A = área molhada

 R_h = raio hidráulico

n= Coeficiente de rugosidade de Manning

 I_{rua} = Declividade da rua (m/m)

k = coeficiente de capacidade da sarjeta

Assim, se Q_{sarjeta projeto} for maior que o escoamento superficial, a sarjeta tem capacidade de escoar o deflúvio.

12. Projeto De Pavimentação

12.1. Pavimentação Em Concreto Asfáltico

O dimensionamento das camadas do pavimento foi realizado através do método de Projeto de Pavimentos Flexíveis de autoria do Engenheiro Murillo Lopes de Souza, recomendado pelo DNER. Também foram utilizadas informações e especificações de Serviços Rodoviários do DEINFRA.

Utilizando a Tabela a seguir, pode-se determinar a espessura da camada de revestimento e qual espessura necessária em função do volume de tráfego. Adotou-se a espessura de **5,0 cm** de revestimento betuminoso.

Tabela – Espessura mínima de revestimento betuminoso

N	Espessura Mínima de Revestimento Betuminoso
N ≤ 10 ⁶	Tratamentos superficiais betuminosos
10 ⁶ < N ≤ 5 x 10 ⁶	Revestimentos betuminosos com 5,0 cm de espessura
$5 \times 10^6 < N \le 10^7$	Concreto betuminoso com 7,5 cm de espessura
$10^7 < N \le 5 \times 10^7$	Concreto betuminoso com 10,0 cm de espessura
N > 5 x 10 ⁷	Concreto betuminoso com 12,5 cm de espessura

Fonte: DNIT (2006)

O próximo passo foi definir os coeficientes de equivalência estruturais, apresentados na Tabela a seguir, para o dimensionamento das camadas do pavimento, a serem usados nas inequações a seguir:

$$RK_R + BK_B \ge H_{20}$$

 $RK_R + BK_B + h_{20}K_S \ge H_n$
 $RK_R + BK_B + h_{20}K_S + h_nK_{ref} \ge H_m$

Onde:

R corresponde a espessura do revestimento;

B corresponde a espessura da camada de base;

h₂₀ corresponde a espessura da camada de sub-base e;

Tabela - Coeficientes de equivalência estrutural

Componentes do pavimento	Coeficiente K
Base ou revestimento de concreto betuminoso	2,00
Base ou revestimento pré-misturado a quente, de graduação densa	1,70
Base ou revestimento pré-misturado a frio, de graduação densa	1,40
Base ou revestimento betuminoso por penetração	1,20
Camadas granulares	1,00
Solo cimento com resistência à compressão	
a 7 dias, superior a 45 kg/cm	1,70
ldem, com resistência à compressão a 7	1,40
dias, entre 45 kg/cm e 28 kg/cm	132,170
Idam aan rasiatênsia à samprasa a 7	1,20
ldem, com resistência à compressão a 7	
dias, entre 28 kg/cm e 21 kg/cm	

Fonte: DNIT (2006)

Sendo que o coeficiente de equivalência estrutural de um material é um valor empírico definido como a relação entre as espessuras de uma base granular e de uma camada de material considerado, que apresente desempenho semelhante, ou seja, considera-se que uma camada de 10 centímetros de um material com coeficiente de equivalência estrutural igual a 1,5 apresenta comportamento igual ao de uma camada de 15 cm de base granular.

Assim, determinaram-se os coeficientes de equivalência estrutural para o dimensionamento do pavimento proposto:

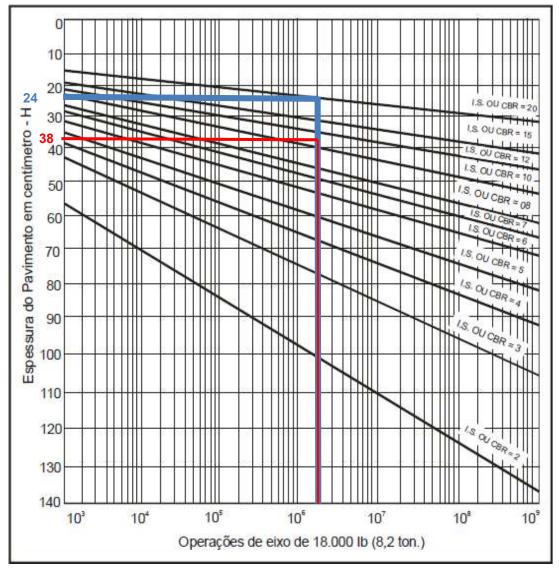
 $K_R = 2.0$

 $K_B = 1,0$

 $K_S = 1,0$

 $K_{ref} = 1,0$

O ISC adotado para o subleito foi de 11,0%.


1) Dimensionamento do pavimento no trecho da Estaca 4 a 18

IS: 11,0%; N: 2x10⁶

$$5.0x2.0 + Bx1.0 \ge 24.0$$

 $B \ge 14.0 \rightarrow 15.0cm$

$$5.0x2.0 + 15x1.0 + h_{20}x1.0 \ge 38.0$$

 $h_{20}x1.0 \ge 13.0 \rightarrow 15.0$ cm

Ábaco para a determinação das espessuras do pavimento

Fonte: Manual de Pavimentação (DNIT, 2006)

Resumo das camadas (após compactação):

Revestimento em CBUQ >= 5,0 cm

Base em brita graduada >=15,0 cm

Sub-base em macadame seco >= 15,0 cm

12.1.1. Distância Média de Transporte (DMT) de materiais das camadas de pavimento:

DMT dos materiais pétreos

FORNECEDOR	ENDEREÇO	DMT
VOLGERSANGER	R. Ver. Rogerio da Silva, 1329 - Alto Aririu, Palhoça, SC.	52,30 km
SULCATARINENSE	Rua Treze de Maio, 2.900 KM 03 - Encruzilhada, Biguaçu, SC.	83,0 km
PEDRITA EXTRAÇÃO DE PEDRAS	BR-101, Km 186, Biguaçu - SC, 88180-000	88,0 km

DMT dos materiais betuminosos - CBUQ

EMPRESA	ENDEREÇO	DMT
VOLGERSANGER	R. Ver. Rogerio da Silva, 1329 -	52,30 km
	Alto Aririu, Palhoça, SC.	
SUL CATARINENSE	Rua Treze de Maio km 2300	85 KM
	Encruzilhada, SC, 88165-270	
NEOVIA	R. Elói Francisco dos Anjos -	108 KM
	Sul do Rio, Tijucas - SC, 88200-	
	000	

13. Projeto De Sinalização

Os projetos de sinalização foram elaborados de acordo com os Manuais Brasileiros de Sinalização de Trânsito do CONTRAN (volumes I, II e III). Maiores detalhes de dimensões de placas e faixas, pictogramas e disposições de sinalização viária são encontradas nas Prancha de Detalhamentos dos Projetos de Sinalização – Volume 3.

13.1. Sinalização Vertical

A sinalização vertical é classificada segundo sua função, que pode ser:

- Regulamentar as obrigações, limitações, proibições e restrições que governam o uso da via;
- Advertir os condutores sobre as condições com potencial de risco na via ou nas suas proximidades.
- Indicar direções, localizações, pontos de interesse ou de serviços, etc.

14. Orçamento

O orçamento foi tomado a partir das quantificações de projeto e utilizando custos e composições do SINAPI e SICRO. A data base do banco de preços e composições é **MAIO DE 2022 e JANEIRO** de 2022, respectivamente. No **Volume 3** é encontrada a planilha orçamentária, quadro de composições,

composição do BDI, cronograma, memória de cálculo de quantidades, planilha de levantamento de eventos e Quadro e Composição do investimento.

15. Prazos E Cronograma

O cronograma foi elaborado de forma que os serviços nas duas etapas sejam executados em 4 meses, conforme apresentado no **Volume 3.** O atraso no cronograma acarretará em multa à CONTRATADA. O prazo total para entrega da obra está definido no cronograma físico-financeiro, contados a partir da assinatura da ordem de serviço.

16. Finalização Do Documento

Encerro o presente memorial contendo 14 laudas, todas rubricadas e esta assinada pelo engenheiro responsável, com anotação de responsabilidade técnica anexa. Todos os casos de dúvidas referentes ao projeto, orçamento e/ou execução deverão ser reportados à Secretaria Municipal responsável para a devida análise.

Vinícius Feller Engenheiro Civil CREA/SC 147.982-3

DIMENSIONAMENTO DO PROJETO DE DRENAGEM

NUMERAÇÃO DOS TRECHOS									
		Cota	ıs (m)		Comprimento (m)	Declividade do	Área (m²)	Área (km²)	
RIO QUATIS	Trecho	Montante	Jusante	Desnível (m)		trecho (m/m)			Coef. C
6+10 A 4	1.1	732,77	730,86	1,91	50,00	0,038	8000	0,008	0,3
6+10 A 14	1.2	732,77	712,46	20,31	150,00	0,135	12000	0,012	0,3
14 A 17+15	1.3	712,46	703,00	9,46	75,00	0,126	5000	0,005	0,3

CAPACIDADE DAS SARJETAS

TRECHO	NOME DA RUA	CLASSIFICAÇÃO	Coef. k	Declividade do trecho (m/m)	Declividade do trecho (%)	Q teórico (m³/s)	Coef. Redução F	Q projeto (m³/s)
1.1	ESTRADA RIO DOS QUATIS	RUA Coletora	1,4400	0,038	3,820	0,2814	0,6	0,169
1.2	ESTRADA RIO DOS QUATIS	RUA Coletora	1,4400	0,135	13,540	0,5299	0,4	0,212
1.3	ESTRADA RIO DOS QUATIS	RUA Coletora	1,4400	0,126	12,613	0,5114	0,4	0,205
			-	Fator de Redução (F)				

edução (F)
F
0,8
0,7
0,6
0,5
0,4

VERIFICAÇÃO DAS SARJETAS

Tr	echo	С	T (anos)	t (min)	i (mm/min)	i (mm/h)	A (m²)	A (km²)	Escoamento superficial (m³/s)	Capacidade de escoamento (m³/s)	Comparação
	1.1	0,3	10	5	2,14	128,29	8000,000	0,008	0,086	0,1689	Sarjeta suficiente
	1.2	0,3	10	5	2,14	128,29	12000,000	0,012	0,128	0,2119	Sarjeta suficiente
	1.3	0,3	10	5	2,14	128,29	5000,000	0,005	0,053	0,2046	Sarjeta suficiente

1	Dados de entrada	
	Coeficiente de Rugosidade (n)	0,014
	Tempo de Retorno (anos)	10
	Tirante relativo máximo (y/d)	0,85

DIMENSIONAMENTO DE GALERIAS CIRCULARES - ENG. VINÍCIUS FELLER

					0,00																																										
Γ		Co	ota			Dealisidada da	Declividade		Área trib	utária	Tempo de	Escoam.	itamai dada		Daalaulada	D		Q/Qp																													
	TRAVESSIA	Montante	Jusante	Comprimento (m)	Desnível (m)	Declividade do trecho (m/m)	adotada	Coeficiente C	Troobe (km²)	Σ A /km²\	Montante	Trecho	itensidade (mm/h)	Q (m ³ /s)	D calculado (mm)	adotado	Qp (m³/s)	(m³/s)	y/	d	V/Vp	Vp (m/s)	V (m	n/s)																							
		(m)	(m)																										arcono (minin)	(m/m)		Trecho (km²) Σ A	Z A (KIII-)	(min)	(min)	(1111111)		()	(mm)		(11173)						
	4	730,860	730,000	8,00	0,860	0,108	0,05000	0,30	0,00800	0,00800	5,00	0,05	128,29	0,09	217,90	400	0,43	0,20	0,30	Ok	0,776	3,441	2,671	Ok																							
	14	712,460	712,000	9,00	0,460	0,051	0,05000	0,30	0,01200	0,01200	5,00	0,05	128,29	0,13	253,68	400	0,43	0,30	0,37	Ok	0,868	3,441	2,985	Ok																							
	17+15	703,000	702,500	6,00	0,500	0,083	0,05000	0,30	0,00500	0,00500	5,00	0,04	128,29	0,05	182,69	400	0,43	0,12	0,23	Ok	0,668	3,441	2,298	Ok																							

Relatório de Materiais Page 1 of 7

Materiais

Projeto: C:\Users\User\AppData\Local\Temp\1_1_GRANF_INFRA_RQ_PAV_ESTRADA GERAL RIO DOS QUATIS_1_7656_b12b4f55.sv\$
Alinhamento: ALINHAMENTO - RIO QUATIS

Grupo de Seções: SL RIO QUATIS

Estaca Inicial: 4+0.000 Estaca Final: 18+0.000

	Tipo	Área m²	Volume m ³	Acumulado m
		m²	m³	m³
Estaca: 4+0.000			•	-
	Corte	0.13	0.00	0.00
	Aterro	0.44	0.00	0.00
	BGS	0.75	0.00	0.00
	CBUQ	0.25	0.00	0.00
	MACADAME	0.75	0.00	0.00
Estaca: 4+1.368		,		
	Corte	0.12	0.16	0.16
	Aterro	0.43	0.60	0.60
	BGS	0.75	1.03	1.03
	CBUQ	0.25	0.34	0.34
	MACADAME	0.75	1.03	1.03
Estaca: 4+10.000				
	Corte	0.05	0.74	0.90
	Aterro	0.43	3.71	4.31
	BGS	0.75	6.47	7.50
	CBUQ	0.25	2.16	2.50
	MACADAME	0.75	6.47	7.50
Estaca: 4+16.139			•	
	Corte	0.30	1.11	2.01
	Aterro	0.21	2.01	6.33
	BGS	0.75	4.60	12.10
	CBUQ	0.25	1.53	4.03
	MACADAME	0.75	4.60	12.10
Estaca: 5+0.000			,	•
	Corte	0.54	1.66	3.68
	Aterro	0.18	0.76	7.09
	BGS	0.75	2.90	15.00
	CBUQ	0.25	0.97	5.00
	MACADAME	0.75	2.90	15.00
Estaca: 5+2.292		•	•	
	Corte	0.63	1.38	5.06
	Aterro	0.15	0.37	7.46
	BGS	0.75	1.72	16.72
	CBUQ	0.25	0.57	5.57
	MACADAME	0.75	1.72	16.72
Estaca: 5+10.695	1	-	-	-

Relatório de Materiais Page 2 of 7

	Corte	1.07	7.16	12.22
	Aterro	0.07	0.96	8.42
	BGS	0.75	6.30	23.02
	CBUQ	0.25	2.10	7.67
	MACADAME	0.75	6.30	23.02
Estaca: 6+0.0	000			
	Corte	1.78	14.07	26.28
	Aterro	0.07	0.65	9.06
	BGS	0.75	6.98	30.00
	CBUQ	0.25	2.33	10.00
	MACADAME	0.75	6.98	30.00
Estaca: 6+8.	785		•	•
	Corte	1.13	13.57	39.85
	Aterro	0.02	0.40	9.46
	BGS	0.75	6.59	36.59
	CBUQ	0.25	2.20	12.20
	MACADAME	0.75	6.59	36.59
Estaca: 7+0.0	000		,	
	Corte	3.16	24.06	63.91
	Aterro	0.00	0.13	9.59
	BGS	0.90	9.25	45.84
	CBUQ	0.30	3.08	15.28
	MACADAME	0.90	9.25	45.84
Estaca: 7+5.2		10.00	15.25	1222
	Corte	2.93	16.05	79.96
	Aterro	0.00	0.00	9.59
	BGS	0.90	4.74	50.59
	CBUQ	0.30	1.58	16.86
	MACADAME	0.90	4.74	50.59
Estaca: 7+10.0		10.50	1, .	150.55
Estaca. 7 110.	Corte	2.71	13.40	93.37
	Aterro	0.00	0.00	9.59
	BGS	0.90	4.27	54.86
	CBUQ	0.30	1.42	18.29
	MACADAME	0.90	4.27	54.86
Estaca: 7+14.		10.50	7.27	34.00
Estaca. 7 114.	Corte	2.73	12.13	105.50
	Aterro	0.00	0.00	9.59
	BGS	0.90	4.01	58.86
	CBUQ	0.30	1.34	19.62
		0.90	_	58.86
Estacal 9:0	MACADAME	10.30	4.01	30.00
Estaca: 8+0.0		2.79	15.38	120.88
	Corte		0.00	9.60
	A +	10.00		19 00
	Aterro	0.00		
	BGS	0.90	5.01	63.87
				

Relatório de Materiais Page 3 of 7

	Corte	3.10	13.21	134.08
	Aterro	0.00	0.00	9.60
	BGS	0.90	4.03	67.91
	CBUQ	0.30	1.34	22.64
	MACADAME	0.90	4.03	67.91
Estaca: 8+10.0	000	- -	-	
	Corte	2.94	17.09	151.17
	Aterro	0.00	0.00	9.61
	BGS	0.90	5.06	72.97
	CBUQ	0.30	1.69	24.32
	MACADAME	0.90	5.06	72.97
Estaca: 8+15.0)47	,	,	,
	Corte	2.51	14.02	165.20
	Aterro	0.00	0.00	9.61
	BGS	0.90	4.63	77.60
	CBUQ	0.30	1.54	25.87
	MACADAME	0.90	4.63	77.60
Estaca: 8+16.5	525	•	•	•
	Corte	2.51	3.72	168.91
	Aterro	0.00	0.00	9.62
	BGS	0.90	1.33	78.93
	CBUQ	0.30	0.44	26.31
	MACADAME	0.90	1.33	78.93
Estaca: 9+0.0	000		•	·
	Corte	2.56	9.03	177.94
	Aterro	0.00	0.00	9.62
	BGS	0.90	3.19	82.12
	CBUQ	0.30	1.06	27.37
	MACADAME	0.90	3.19	82.12
Estaca: 9+2.8				
	Corte	2.42	7.17	185.11
	Aterro	0.00	0.00	9.63
	BGS	0.90	2.58	84.69
	CBUQ	0.30	0.86	28.23
	MACADAME	0.90	2.58	84.69
Estaca: 9+9.0				
	Corte	1.33	12.00	197.11
	Aterro	0.08	0.28	9.91
	BGS	0.90	5.77	90.46
	CBUQ	0.30	1.92	30.15
	MACADAME	0.90	5.77	90.46
Estaca: 10+0.0		1	1-	1
	Corte	0.19	8.34	205.45
	Aterro	0.49	3.10	13.01
	BGS	0.75	9.01	99.47
	CBUQ	0.75	3.00	33.16
	10004	10.20	15.55	133.13
	MACADAME	0.75	9.01	99.47

Relatório de Materiais Page 4 of 7

	Corte	0.34	5.37	210.82
	Aterro	0.70	11.93	24.94
	BGS	0.75	15.00	114.47
	CBUQ	0.25	5.00	38.16
	MACADAME	0.75	15.00	114.47
Estaca: 11+11.	435	•		
	Corte	0.22	3.20	214.03
	Aterro	0.54	7.10	32.03
	BGS	0.75	8.58	123.04
	CBUQ	0.25	2.86	41.01
	MACADAME	0.75	8.58	123.04
Estaca: 11+17.	815			•
	Corte	0.22	1.41	215.44
	Aterro	0.22	2.50	34.54
	BGS	0.75	4.79	127.83
	CBUQ	0.25	1.60	42.61
	MACADAME	0.75	4.79	127.83
Estaca: 12+0.	000			
	Corte	0.03	0.28	215.72
	Aterro	0.31	0.57	35.11
	BGS	0.75	1.64	129.47
	CBUQ	0.25	0.55	43.16
	MACADAME	0.75	1.64	129.47
Estaca: 12+4.	196			•
	Corte	0.00	0.07	215.79
	Aterro	0.88	2.49	37.60
	BGS	0.75	3.15	132.61
	CBUQ	0.25	1.05	44.20
	MACADAME	0.75	3.15	132.61
Estaca: 13+0.	000			
	Corte	0.02	0.16	215.95
	Aterro	0.85	13.67	51.27
	BGS	0.75	11.85	144.47
	CBUQ	0.25	3.95	48.16
	MACADAME	0.75	11.85	144.47
Estaca: 13+8.	930		,	
	Corte	0.82	3.75	219.69
	Aterro	0.22	4.77	56.04
	BGS	0.75	6.70	151.16
	CBUQ	0.25	2.23	50.39
	MACADAME	0.75	6.70	151.16
Estaca: 13+10.				
	Corte	1.00	0.99	220.68
	Aterro	0.19	0.21	56.25
	BGS	0.75	0.80	151.97
	CBUQ	0.25	0.27	50.66
	1 -			,
	MACADAME	0.75	0.80	151.97

Relatório de Materiais Page 5 of 7

	Corte	2.05	8.54	229.22
	Aterro	0.02	0.56	56.81
	BGS	0.75	4.17	156.14
	CBUQ	0.25	1.39	52.05
	MACADAME	0.75	4.17	156.14
Estaca: 14+0.0	000		-	•
	Corte	3.06	11.44	240.66
	Aterro	0.00	0.05	56.85
	BGS	0.75	3.33	159.47
	CBUQ	0.25	1.11	53.16
	MACADAME	0.75	3.33	159.47
Estaca: 14+2.1	.89			
	Corte	3.16	6.90	247.57
	Aterro	0.00	0.00	56.86
	BGS	0.75	1.64	161.11
	CBUQ	0.25	0.55	53.70
	MACADAME	0.75	1.64	161.11
Estaca: 14+12.4	123		,	
	Corte	2.06	26.69	274.26
	Aterro	0.00	0.02	56.88
	BGS	0.75	7.68	168.78
	CBUQ	0.25	2.56	56.26
	MACADAME	0.75	7.68	168.78
Estaca: 15+0.0	000			•
	Corte	1.79	14.62	288.87
	Aterro	0.02	0.11	56.99
	BGS	0.75	5.68	174.47
	CBUQ	0.25	1.89	58.16
	MACADAME	0.75	5.68	174.47
Estaca: 15+2.3	379		•	•
	Corte	1.71	4.17	293.04
	Aterro	0.03	0.06	57.05
	BGS	0.75	1.78	176.25
	CBUQ	0.25	0.59	58.75
	MACADAME	0.75	1.78	176.25
Estaca: 15+10.0	000		•	•
	Corte	1.27	11.36	304.40
	Aterro	0.03	0.22	57.26
	BGS	0.75	5.72	181.97
	CBUQ	0.25	1.91	60.66
	MACADAME	0.75	5.72	181.97
Estaca: 15+12.3	336	*	-	
	Corte	1.21	2.88	307.28
	Aterro	0.04	0.08	57.35
	BGS	0.75	1.75	183.72
	CBUQ	0.25	0.58	61.24
	MACADAME	0.75	1.75	183.72
	IMACADAME	0.75	11.75	100.72

Relatório de Materiais Page 6 of 7

	Corte	0.67	4.53	311.80
	Aterro	0.21	0.61	57.95
	BGS	0.75	3.62	187.34
	CBUQ	0.25	1.21	62.45
	MACADAME	0.75	3.62	187.34
Estaca: 16+0.	000	<u>"</u>		<u>'</u>
	Corte	0.48	1.65	313.46
	Aterro	0.19	0.59	58.54
	BGS	0.75	2.13	189.47
	CBUQ	0.25	0.71	63.16
	MACADAME	0.75	2.13	189.47
Estaca: 16+2.	684		•	<u>'</u>
	Corte	0.42	1.23	314.69
	Aterro	0.19	0.52	59.06
	BGS	0.75	2.01	191.48
	CBUQ	0.25	0.67	63.83
	MACADAME	0.75	2.01	191.48
Estaca: 16+8.	206			
	Corte	0.24	1.86	316.55
	Aterro	0.27	1.28	60.34
	BGS	0.75	4.14	195.62
	CBUQ	0.25	1.38	65.21
	MACADAME	0.75	4.14	195.62
Estaca: 16+12.		10.73	11121	155.02
L3taca: 10+12:	Corte	0.06	0.64	317.19
	Aterro	0.50	1.65	61.99
	BGS	0.75	3.20	198.82
	CBUQ	0.75	1.07	66.27
	MACADAME	0.25	3.20	198.82
Estaca: 16+14.		0.73	3.20	190.02
EStaca. 10+14.	Corte	0.12	0.23	317.42
		0.12		63.03
	Aterro	_	1.04	
	BGS	0.75	1.79	200.61
	CBUQ	0.25	0.60	66.87
- 16.17	MACADAME	0.75	1.79	200.61
Estaca: 16+17.		To 26	0.50	210.01
	Corte	0.36	0.59	318.01
	Aterro	0.27	0.79	63.82
	BGS	0.75	1.79	202.40
	CBUQ	0.25	0.60	67.47
	MACADAME	0.75	1.79	202.40
Estaca: 17+10.		12	1	laar
	Corte	0.45	5.22	323.23
	Aterro	0.75	6.50	70.32
	Incc	0.75	9.57	211.97
	BGS			
	CBUQ MACADAME	0.25 0.75	3.19 9.57	70.66 211.97

Relatório de Materiais Page 7 of 7

Corte	0.42	4.37	327.60
Aterro	0.38	5.67	75.99
BGS	0.75	7.50	219.47
CBUQ	0.25	2.50	73.16
MACADAME	0.75	7.50	219.47

RELATÓRIO TÉCNICO

Balneário Piçarras, 11 de julho de 2022

CONTRATANTE: PREFEITURA MUNICIPAL DE RESERVA

Tipo de ensaio: Caracterização de solo

Amostra: AMOSTRA 2 – ESTRADA RIO QUATIS

Data da entrada: 23/06/2022

Data de término dos ensaios: 08/072022 Data de emissão do relatório: 11/07/2022

NBR 7182/2016

Procedimentos

A amostra de solo foi entregue ao laboratório pelo contratante.

Para a amostra de material coletado foram realizados ensaios de "**Solo – Ensaio de Compactação**" NBR 7182 e "**Solo-Índice de suporte Califórnia**" NBR – ME 9895 com energia normal de "6kgf/cm3".

Observações:

Os resultados se referem à amostra coletada.

Este relatório só pode ser reproduzido na integra e com a prévia autorização.

Os resultados dos ensaios estão discriminados nas planilhas em anexo.

RESULTADOS

Ensaio de Compactação - NBR 7182

Densidade Máxima = 2,062 g/cm3 Umidade Ótima = 6,4%

Determinação do Índice de suporte Califórnia – NBR 9895

ISC = 11% Expansão = 0,03%

> Eng° Alyson Gregory Retkva CREA 146281-3

CONTRATANTE: PREFEITURA MUNICIPAL DE RANCHO QUEIMADO

ESTUDO: CARACTERIZAÇÃO DE SOLO

AMOSTRA: SOLO - CBR AMOSTRA 2 – ESTRADA RIO QUATIS

ISC (Indíce de Suporte Califórnia)

Expansão: constante da pren								
Anel Nº:						0,0771		
Cilindro Nº				1				
Altura inicial (cm)								
Data	Hora	leitura (m	m)	difer	ença	%		
		0						
01/07/2022	16:00	1,02		()	0,00		
02/07/2022	16:00	1,03		0,	01	0,00		
03/07/2022	16:00	1,1		0,	08	0,07		
04/07/2022	16:00	1,15	1,15 0,			0,11		
Penetração	Tempo	leitura		Pressã	o (MPa)			
(mm)	(min)	(mm)	Determ.	Corrigido	Padrão	%		
0,63	0,5	14,00	1,08	1,08				
1,27	1,0	35,00	2,70	2,70				
2,54	2,0	75,00	5,78	5,78	70,00	8,26		
5,08	4,0	155,00	11,95	11,95	105,00	11,38		
7,62	6,0	235,00	18,12	18,12	133,00			
10,16	8,0	320,00	24,67	24,67	161,00			
12,70	10,0	420,00	32,38	32,38	182,00			
Penetração			Pressão	(MPa)				
(mm)		Са	llculada			Padrão		
2,54			5,78			70,00		
5,08			11,95			105		

ISC (%) 11%

Eng° Alyson Gregory Retkva CREA 146281-3

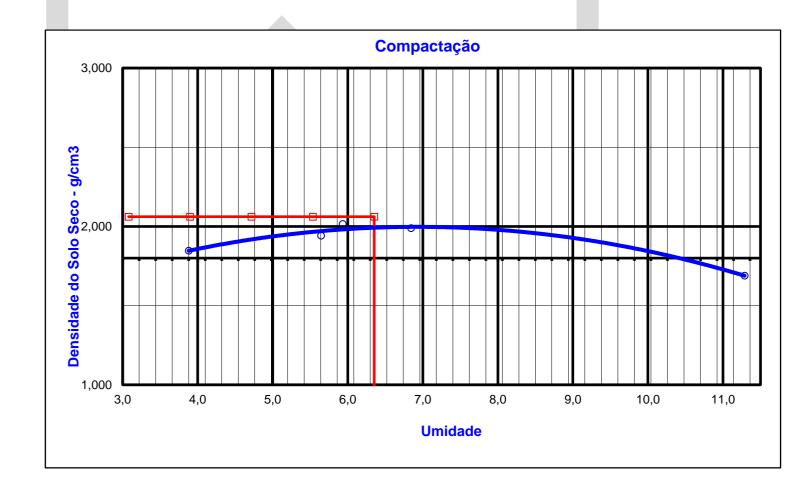
CURVA PRESSÃO-PENETRAÇÃO

SOLO - ENSAIO DE COMPACTAÇÃO

NBR 7182/2016

Obs. :Processo de preparação da amostra com secagem prévia ao ar.

Estudo: CARACTERIZAÇÃO DE SOLO


Massa utilizada (g). 4000

Amostra: AMOSTRA 2 – ESTRADA RIO QUATIS

Contratante: PREFEITURA MUNICIPAL DE RANCHO QUEIMADO

Contratante: PREFEITURA MUNICIPAL DE RANCHO QUEIMADO						
Cilindro Nº	1	1	1	1	1	
Água acrescentada (ml)	200	260	280	270	100	
Peso do cilindro (g)	5450	5450	5450	5450	5450	
Volume do cilindro (cm3)	2032	2032	2032	2032	2032	
Peso cilindro + solo úmido (g)	9350	9620	9790	9770	9270	
Peso do solo úmido (g)	3900	4170	4340	4320	3820	
Densidade solo úmido (g/cm3)	1,919	2,052	2,136	2,126	1,880	
Cápsula №	1	1	1	1	1	
Peso da cápsula + Solo úmido(g)	165	148	143	135	112	
Peso da cápsula + solo seco (g)	158	144	137	128	103	
Peso da cápsula (g)	26,52	28,32	28,81	28,81	28,81	
Peso da água (g)	7,00	4,00	6,00	7,00	9,00	
Peso do solo seco (g)	131,48	115,68	108,19	99,19	74,19	
Umidade (%)	5,32%	3,46%	5,55%	7,06%	12,13%	
Densidade solo seco (g/cm3)	1,822	1,984	2,024	1,986	1,677	

DENSIDADE MAXIMA (g/cm³)	2,062
UMIDADE ÓTIMA (%)	6,4
ISC (%)	11
EXPANSÃO (%)	0,03

Eng° Alyson Gregory Retkva CREA 146281-3

RELATÓRIO TÉCNICO

Balneário Piçarras, 11 de julho de 2022

CONTRATANTE: PREFEITURA MUNICIPAL DE RESERVA

Tipo de ensaio: Caracterização de solo

Amostra: AMOSTRA 3 – ESTRADA RIO QUATIS

Data da entrada: 23/06/2022

Data de término dos ensaios: 08/072022 Data de emissão do relatório: 11/07/2022

NBR 7182/2016

Procedimentos

A amostra de solo foi entregue ao laboratório pelo contratante.

Para a amostra de material coletado foram realizados ensaios de "**Solo – Ensaio de Compactação**" NBR 7182 e "**Solo-Índice de suporte Califórnia**" NBR – ME 9895 com energia normal de "6kgf/cm3".

Observações:

Os resultados se referem à amostra coletada.

Este relatório só pode ser reproduzido na integra e com a prévia autorização.

Os resultados dos ensaios estão discriminados nas planilhas em anexo.

RESULTADOS

Ensaio de Compactação - NBR 7182

Densidade Máxima = 1,780 g/cm3 Umidade Ótima = 7,5%

Determinação do Índice de suporte Califórnia – NBR 9895

ISC = 29% Expansão = 0,11%

> Eng° Alyson Gregory Retkva CREA 146281-3

CONTRATANTE: PREFEITURA MUNICIPAL DE RANCHO QUEIMADO

ESTUDO: CARACTERIZAÇÃO DE SOLO

AMOSTRA: SOLO - CBR AMOSTRA 3 – ESTRADA RIO QUATIS

ISC (Indíce de Suporte Califórnia)

Expansão:	Expansão: constante da prensa					
Anel Nº:						0,0771
Cilindro Nº		1				
Altura inicial (cm)						
Data	Hora	leitura (m	m)	difer	%	
		0				
03/07/2022	12:00	1,1		0		0,00
04/07/2022	12:00	1,16		0,06		0,10
05/07/2022	12:00	1,2		0,1		0,09
06/07/2022	12:00	1,23		0,13		0,11
Penetração	Tempo	leitura		Pressã		
(mm)	, .'.	(mm)	Determ.	Corrigido	Padrão	%
0,63	0,5	75,00	5,78	5,78		
1,27	1,0	170,00	13,11	13,11		
2,54	2,0	265,00	20,43	20,43	70,00	29,19
5,08	4,0	360,00	27,76	27,76	105,00	26,43
7,62	6,0	385,00 29,68		29,68	133,00	
10,16	8,0	410,00	31,61	31,61	161,00	
12,70	10,0	430,00	33,15	33,15	182,00	
Penetração	Pressão (MPa)					
(mm)	Calculada Padrão					
2,54	20,43 70,00					
5,08	27,76 105					

ISC (%) 29%

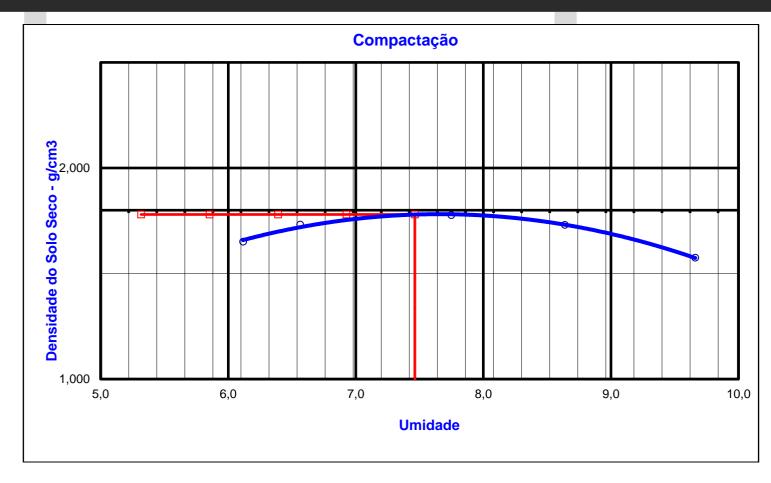
Eng° Alyson Gregory Retkva CREA 146281-3

CURVA PRESSÃO-PENETRAÇÃO

SOLO - ENSAIO DE COMPACTAÇÃO

NBR 7182/2016

Obs. :Processo de preparação da amostra com secagem prévia ao ar.


Estudo: CARACTERIZAÇÃO DE SOLO

Massa utilizada (g). 4500

Amostra: AMOSTRA 3 – ESTRADA RIO QUATIS

Contratante: PREFEITURA MUNICIPAL DE RANCHO QUEIMADO					
Cilindro №	1	1	1	1	1
Água acrescentada (ml)	200	275	400	325	100
Peso do cilindro (g)	5360	5360	5360	5360	5360
Volume do cilindro (cm3)	2032	2032	2032	2032	2032
Peso cilindro + solo úmido (g)	8920	9110	9250	9180	8870
Peso do solo úmido (g)	3560	3750	3890	3820	3510
Densidade solo úmido (g/cm3)	1,752	1,845	1,914	1,880	1,727
Cápsula №	1	1	1	1	1
Peso da cápsula + Solo úmido(g)	160	152	152	126	118
Peso da cápsula + solo seco (g)	153	144	143	119	110
Peso da cápsula (g)	28,29	28,78	30,54	30,9	27,19
Peso da água (g)	7,00	8,00	9,00	7,00	8,00
Peso do solo seco (g)	124,71	115,22	112,46	88,1	82,81
Umidade (%)	5,61%	6,94%	8,00%	7,95%	9,66%
Densidade solo seco (g/cm3)	1,659	1,726	1,773	1,742	1,575

DENSIDADE MAXIMA (g/cm³)	1,780		
UMIDADE ÓTIMA (%)	7,5		
ISC (%)	29		
EXPANSÃO (%)	0,11		

Eng° Alyson Gregory Retkva CREA 146281-3